If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+49.0237184t+6.3=0
a = -16; b = 49.0237184; c = +6.3;
Δ = b2-4ac
Δ = 49.02371842-4·(-16)·6.3
Δ = 2806.5249657625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49.0237184)-\sqrt{2806.5249657625}}{2*-16}=\frac{-49.0237184-\sqrt{2806.5249657625}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49.0237184)+\sqrt{2806.5249657625}}{2*-16}=\frac{-49.0237184+\sqrt{2806.5249657625}}{-32} $
| 6a-14=4+2 | | w+242=634 | | 5x+10=3x(x+10) | | 2(-6)-y=5 | | k–2)=10(3k+9) | | 8.20n-825+3.25n=800 | | x-8/7+3=5 | | 2-4g=-16 | | X-3(2x+3)=7-5x | | 470=q+704 | | 7y+7-7y=14-7y | | h+-394=410 | | 9/3n=-1 | | t-192=5 | | 22q=242 | | t-99=-45 | | m/–6=8 | | h-11=33 | | 10)=2(2r+5)-2(2r+25) | | -3y2=-75 | | 5/8=c/6 | | 2×+4x+x=147 | | s+13=14 | | 3x÷17=4x÷15 | | -5=d+-9 | | 9/3n+1=0 | | -16=s+3 | | (4x-3x)^2=15 | | –16=s+3 | | Y=2x(3)-8 | | z-13=8 | | 3(x-2)-4(x+1)=0 |